Broadband dispersion-engineered microresonator on a chip

Citation:

Ki Youl Yang, Katja Beha, Daniel C Cole, Xu Yi, Pascal Del'Haye, Hansuek Lee, Jiang Li, Dong Yoon Oh, Scott A Diddams, Scott B Papp, and Kerry J Vahala. 2016. “Broadband dispersion-engineered microresonator on a chip.” Nature Photonics, 10, 5, Pp. 316–320. Publisher's Version

Abstract:

The control of dispersion in fibre optical waveguides is of critical importance to optical fibre communications systems and more recently for continuum generation from the ultraviolet to the mid-infrared. The wavelength at which the group velocity dispersion crosses zero can be set by varying the fibre core diameter or index step. Moreover, sophisticated methods to manipulate higher-order dispersion so as to shape and even flatten the dispersion over wide bandwidths are possible using multi-cladding fibres. Here we introduce design and fabrication techniques that allow analogous dispersion control in chip-integrated optical microresonators, and thereby demonstrate higher-order, wide-bandwidth dispersion control over an octave of spectrum. Importantly, the fabrication method we employ for dispersion control simultaneously permits optical Q factors above 100 million, which is critical for the efficient operation of nonlinear optical oscillators. Dispersion control in high-Q systems has become of great importance in recent years with increased interest in chip-integrable optical frequency combs.
Last updated on 07/30/2022