On-chip integrated laser-driven particle accelerator


Neil V. Sapra, Ki Youl Yang, Dries Vercruysse, Kenneth J. Leedle, Dylan S. Black, R. Joel England, Logan Su, Rahul Trivedi, Yu Miao, Olav Solgaard, Robert L. Byer, and Jelena Vučković. 2020. “On-chip integrated laser-driven particle accelerator.” Science, 367, 6473, Pp. 79-83.


Particle accelerators are usually associated with large national facilities. Because photons are able to impart momentum to electrons, there are also efforts to develop laser-based particle accelerators. Sapra et al. developed an integrated particle accelerator using photonic inverse design methods to optimize the interaction between the light and the electrons. They show that an additional kick of around 0.9 kilo–electron volts (keV) can be given to a bunch of 80-keV electrons along just 30 micrometers of a specially designed channel. Such miniaturized dielectric laser accelerators could open up particle physics to a number of scientific disciplines. Science, this issue p. 79 A photonic inverse design approach is used to create a miniaturized on-chip particle accelerator. Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo–electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega–electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega–electron volt-scale DLA.